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Abstract. Personalisation in a pervasive environment is challenging but 

essential.  Without it pervasive systems will be unable to manage environments 

in ways that satisfactorily meet the needs of individual users.  However, the 

dynamic aspects of pervasive environments provide new and interesting 

challenges for personalisation.  This paper looks at how personalisation, based 

on user preferences and tasks, is implemented within a Personal Smart Space 

(PSS). 
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1   Introduction 

The rapid growth in the numbers of sensors, devices and networks coupled with the 

ubiquitous availability of services is resulting in complex environments that may soon 

become unmanageable for the average user. The aim of pervasive computing is to 

alleviate this problem and assist the user by providing an intelligent environment 

where services and resources are managed on their behalf with minimal user 

intervention.  Personalisation is key to realising this goal. 

The aim of personalisation is to adapt the behaviour of the system to meet the 

needs of individual users, causing it to behave differently for different users or for 

different contexts and available resources. For a mobile user this is particularly 

relevant since as he/she moves around, both his/her context and available resources 

will change.  The system must track these changes and adapt its behaviour when 

necessary. To do this effectively it needs to acquire user specific information on user 

behaviours and preferences indicating how to adapt the system in different contexts. 

The Persist project [1] aims to provide a pervasive experience through an 

architecture based on the notion of a Personal Smart Space (PSS) [2].  In contrast to 

common pervasive trends the PSS attempts to bridge the gap between mobile users 

and static intelligent spaces.  Section 2 presents the Personal Smart Space concept and 

the PSS platform architecture.  Sections 3 and 4 describe several key concepts 

implemented within the PSS personalisation system to overcome the interesting and 

challenging issues of providing personalisation in a pervasive domain. 



2   Personal Smart Spaces 

Pervasive computing research often centres on the development of pervasive systems 

within a local or a global domain.  When pervasive technology is applied to a local 

domain we refer to this as a smart space.  This is a bounded physical environment 

filled with adaptive devices (such as lights, window shutters, etc.) that can be 

automatically managed to meet the needs of individual users. Such systems hold great 

potential for independent living.  In a global domain the goal is to provide mobile 

users with devices, networks and services to meet their needs wherever they may be. 

The location of the user plays a large part in the decision making process.  

These two research tracks have tended to remain independent of one another, 

resulting in islands of pervasiveness separated by voids in which the support for 

pervasiveness is limited.  The PSS approach integrates these two by unifying local, or 

fixed, smart spaces (associated with buildings) and global pervasiveness, mediated via 

mobile ad hoc networks (associated with users).  A PSS is based on a personal area 

network constructed from a variety of devices ranging from static resources (e.g. 

printer) to smaller mobile and wearable devices to minute devices such as smart dust.   

A PSS can be mobile in which case its physical boundary moves with the PSS 

owner (who may be a person or legal entity) or fixed in that it is implemented within a 

static structure.  Utilising ad-hoc network technology a PSS can interoperate with 

other PSSs for information and service sharing as shown in Fig. 1. 
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Fig. 1.  Interaction between PSSs. a) a mobile PSS interacts with a fixed PSS; b) two mobile 

PSSs interact via a fixed PSS; c) two mobile PSSs interact without a fixed PSS. 

2.1   The PSS Platform 

For a device to be PSS-enabled it must run an instance of the PSS platform software.  

The platform provides various core PSS management functions (e.g. personalisation 

and proactivity) as well as components that support the self-improving aspect of the 

PSS (such as learning).  Fig. 2 shows the architecture of the PSS platform. 

Networking, messaging and service runtime are handled in the lower layers while 

the PSS Framework layer relates to user experience.  One important aim of a PSS is 

self-improvement by learning to identify trends in user behaviour enabling 

recommendations and predictions for environment adaptations that can be performed 

automatically on behalf of the user.  Several component blocks within the framework 

layer are key to meeting this goal: 



 

 

Fig. 2.  PSS Platform Architecture 

(1) Context Management (CM).  This component block stores and manages the 

contextual information related to the PSS owner.  Such information can originate 

from a variety of sources such as sensors or services (both enabling services within 

the platform and third party services) or can be entered explicitly by the owner.  

Context information is used throughout the platform. 

(2) Personalisation.  This block maintains and processes the stores of user preferences 

and user task models (stored in the CM database). It responds to requests for such 

preference information (through Preference Management) and user task information 

(through User Intent) as well as automatically re-evaluating such information as 

context changes occur. 

(3) Learning Management (LM).  The LM is implemented as a library store 

containing various learning algorithms (both batch mining and incremental) used for a 

variety of learning tasks throughout the framework.   

(4) User Interaction.  Within this block the User Interaction Monitor (UIM) captures 

user behaviours as the user interacts with services, networks and devices within their 

environment (e.g. selecting a service, turning off a light, etc.).  Feedback Management 

provides GUIs used at the point of pro-active personalisation application. 

(5) Proactivity.  The Proactivity block processes several input streams that forward 

personalisation proposals (from Personalisation and Learning Management 

components).  It decides what personalisation proposals to implement and resolves 

conflicts between proposals from different input streams if they arise. 

The first version of the integrated platform is now available to download from the 

Sourceforge website [3].  Development still continues to enhance support for third 

party services with a view to fully demonstrating the platform in September 2010. 

A qualitative analysis of the platform architecture was carried out with three 

separate user groups consisting of both males and females between the ages of 18 and 

64.  The groups were shown two scenarios illustrating how the PSS could provide 

benefit in terms of proactively personalising their environment based on learnt 



behaviours and information exchange.  Encouragingly the majority of users indicated 

they would be happy to use such a system and saw its potential to support them in 

organisational and management tasks.  In addition a quantitative analysis has been 

outlined including a set of benchmark metrics that components must achieve.  We are 

currently testing the delivered integrated platform against such metrics. 

3   Dynamic Context-Dependent User Profile 

Satyanarayanan [4] argues that in pervasive environments, higher-level user 

information is essential for system decision taking, since without such information it 

is impossible to know what adaptations will help rather than hinder the user.  The 

store of such user information is often referred to as a user profile and acts as a driver 

for personalisation processes.  Several profiling standards exist defining the content of 

user profiles.  The CC/PP standard [5] relates to a web environment while the ETSI 

standard [6] relates to a mobile environment.  These standards are useful in their 

respective domains but they do not support conditional user preferences. 

Personalisation in a pervasive environment must be able to handle a level of 

dynamism not relevant to personalisation in other domains, such as web 

environments.  This dynamic aspect is introduced through changing context.  Firstly, 

the available resources will change as the user’s PSS interacts with other PSSs (both 

fixed and mobile) in their vicinity.  The availability of resources affects the possible 

functions that the user can perform.  Secondly, users may have different requirements 

in different contexts.  For example, a user might want to share a WiFi service when he 

is at work but not when he is in the shopping mall.  In other words, the profile must 

include context-dependent user information that changes with the user’s context. 

The user profile within the PSS contains two types of context-dependent user 

information: user preferences and user tasks.  Both are used in decision taking to 

achieve personalised adaptation.  The latter differs from context-aware adaptation in 

that it can adapt the behaviour of the system differently for different users rather than 

adapting it uniformly for all users based on different situations. 

3.1   User Preferences 

The preferences of the user may be captured and represented in a variety of forms. In 

the Persist platform three different forms are used: 

(1) Preference rules. These are user specific rules that dictate the needs of a user in 

some context.  With this information the system can adapt its behaviour on behalf of 

the user when the particular contextual situation arises.  Such rules may be displayed 

in human-readable form, affording users the possibility of viewing and manipulating 

them if so desired. This enables the user to retain a sense of control as well as a better 

understanding of what information the system holds and therefore what behaviours to 

expect. Such understanding is crucial for system acceptance (e.g. Dey [7]).   

(2) Neural nets. Here the context and actions of the user are used to train a neural 

network. The preferences are stored as a set of weights associated with the nodes and 



links of the network. Thus the user cannot view the result in any meaningful way 

although for some preferences it provides a more powerful mechanism.  

(3) Bayesian networks. These are similar to neural networks in the way in which they 

are trained and used. 

While all three formats are used in the Persist platform, this paper focuses only on 

the rule-based form as complete coverage of all three would make the paper too long.  

Within a PSS, user preference rules are implemented as IF-THEN-ELSE rules.  At 

a simple level a preference consists of two key parts, a condition and an outcome, e.g. 

IF location=work AND status=free   (condition) 

THEN share_wifi=true    (outcome) 

The condition represents some contextual state and the outcome represents the action 

to perform depending on the truth of the condition.  Note that the task of providing 

context tags such as symbolic location names and user status is a challenging issue.  

This is handled within the Persist platform by context inference techniques using an 

ontology developed for the purpose. However, this is outside the scope of this paper.   

Since the definition of a preference rule is recursive, at a more complex level the 

outcome of one preference rule may be another IF-THEN-ELSE preference.  Thus the 

structure of a preference rule has the potential to become large and complex.  For this 

reason house-keeping operations are being developed to prune over-complex rules. 

Since user preferences depend on context, when the context changes, the 

personalization may need to be re-evaluated. To handle this the PSS implements a 

preference condition monitor that listens for relevant context changes, re-evaluating 

the dependent preferences when a change occurs.  If this results in a new outcome, 

Preference Management forwards this to Proactivity for implementation. 

3.2   User Tasks 

In addition to having context-dependent needs and preferences, a user may also 

exhibit recurring patterns of behaviour.  This is often the case when the user performs 

a recurring task.  For example, each time the user leaves work in the evenings they 

may perform the same sequence of actions: turn off office lights, unlock car, set radio 

to news channel.  With this information the system can identify what task the user is 

currently performing and adapt the environment appropriately on their behalf to help 

them achieve their goals.  Within the PSS tasks are implemented as hierarchical 

models similar to Hierarchical Hidden Markov Models (HHMM) [8].  At a simple 

level each task consists of a sequence of actions. 

As with preferences each task may be recursive, where an action can be another 

task.  Unlike preferences, the implementation of an action within a task is primarily 

dependent on the completion of previous actions within the task.  However, context 

information is crucial to ensure that an action is implemented appropriately.  It may 

be the case that some actions within a task cannot, or should not, be instigated until a 

particular context situation holds. For example, consider the following: 

<task name=task_1> 

 <action name=action_1> 

  <condition>location=office</condition> 

  <outcome>office_lights=off</outcome> 



 </action> 

 < action name=action_2> 

  <condition>location=car</condition> 

  <outcome>car_lock=unlocked</outcome> 

 </action> 

 … 

</task> 

 

In this example it would be undesirable for the car to be unlocked before the user is in 

the vicinity.  Therefore, each action can have an associated context condition that 

must hold true before the action can be initiated. 

Before a task can be implemented, the system must identify which task (if any) the 

user is trying to achieve.  To do this, current user behaviour is monitored via the UIM.  

The system cross-references this with a task model to identify if a known task is being 

performed.  If a task is identified User Intent forwards future actions to Proactivity for 

implementation. 

3.2   Proactive Behaviours based on Profile Information 

Since the user profile within a PSS consists of two types of user information 

(preferences and tasks), mechanisms are required to mediate both types for the 

resolution and implementation of automatic system behaviours.  The Proactivity 

component (to be fully described in a future paper) provides this functionality. 

It regularly receives inputs in the form of preference outcomes (from Preference 

Management) and predicted task actions (from User Intent).  When either input type 

is received it is checked against the other input stream to identify possible conflicts.  

If a conflict is detected, confidence levels and quality of context values are used to 

find a resolution without involving the user (where possible).  If no conflict is 

detected the input is implemented accordingly. 

In both situations Feedback Management can be used to involve the user.  The PSS 

provides several levels of feedback involvement allowing the user to be prompted 

according to system confidence.  This ranges from explicit prompts (requiring user 

input) to implicit prompts (only requiring input if the user wishes to abort the 

operation) to automatic behaviour with no prompting.  The aim is to reduce user 

interactions without completely removing the user from decision making processes. 

4   Implicit Learning and Profile Management 

For effective personalisation it is essential to maintain an up-to-date user profile.  

Some systems (e.g. [9, 10]) rely on the user to do this manually. However, this places 

a great burden on the user, often out-weighing the benefits personalisation aims to 

provide.  Consider the following scenarios: 

(1) A new user starts to use a PSS.  Their initial profile will be sparse, if not empty.  

An extensive profile specific to the individual user must be created.  



(2) An existing user starts to use a new service.  Their profile may lack information to 

personalise the new service.  New information may be required or existing 

information may need to be refined. 

(3) An existing user changes their behaviour.  Their profile must be updated to reflect 

the behaviour change. 

The first scenario is inevitable for each new PSS user.  The second and third 

scenarios will occur regularly throughout the lifetime of the PSS.  This illustrates that 

profile management is an ongoing and regular task that could easily overwhelm the 

average user.  Hence many recent pervasive projects (e.g. [11, 12]) have adopted 

implicit techniques utilising monitoring mechanisms (to gather historic user behaviour 

data) and machine learning algorithms (to extract useful information from such data). 

The PSS monitors user behaviour (based on user interactions with services, 

networks and devices) via the UIM.  The UIM performs passive monitoring; this 

means that the onus is on the resource the user is interacting with to send the UIM 

notifications of user actions.  This passes control back to the monitored resource and 

removes static dependencies on roaming resources.  When the UIM receives a 

notification of an interaction, context history mechanisms store the interaction with a 

set of relevant context attributes, describing the context in which the interaction 

occurred.  This set of historic behaviour data may then be processed by various 

machine learning algorithms to extract user preferences and user tasks. 

For the purposes of the Persist platform, where the study of different learning 

mechanisms was not one of the objectives, one mechanism was selected for 

demonstration; the C4.5 decision tree algorithm [13] (an extension of Quinlan’s ID3 

algorithm).  Each batch execution of the algorithm generates a set of decision trees, 

representing a preference.  This is then translated into the internal preference format 

(shown above) and merged with the user’s existing preference set within their profile.  

This rule based approach is used in several projects [14, 15] and has been successfully 

implemented and evaluated in the Daidalos project platform (to appear in forthcoming 

paper).  Although a lack of history can often lead to inaccurate learning in the early 

stages [16], negative impact can be mitigated through the use of appropriate feedback 

and prompting systems.  In the PSS such functionality is provided by the Feedback 

Management component. 

Task discovery is performed in two stages.  Firstly, repeated sequences of actions 

are discovered using pattern discovery techniques.  This process generates a list of 

common action sequences which are translated into the task format (shown above) 

and stored as the user’s task model.  Other projects such as MavHome [17] and 

Synapse [18] use similar methods for task discovery; however, Persist incorporates 

context-dependencies into tasks to mitigate incorrect or premature behaviours.  Each 

task is analysed to identify actions that only occur in specific context situations.  This 

specific context information is added to the relevant actions as a context condition 

indicating that the action should only be initiated if the context condition holds.   
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